
Research Article Vol. 12, No. 1 / 1 January 2021 / Biomedical Optics Express 226

Correction of circumferential and longitudinal
motion distortion in high-speed
catheter/endoscope-based optical coherence
tomography

TAN HUU NGUYEN,1,2 OSMAN OGUZ AHSEN,1 KAICHENG LIANG,1

JASON ZHANG,1 HIROSHI MASHIMO,3,4 AND JAMES G. FUJIMOTO1,*

1Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2PathAI Inc., 120 Brookline Ave, Boston, MA 02215, USA
3Veterans Affairs Boston Healthcare System, MA 02130, USA
4Havard Medical School, MA 02130, USA
*jgfuji@mit.edu

Abstract: Catheter/endoscope-based optical coherence tomography (OCT) is a powerful
modality that visualizes structural information in luminal organs. Increases in OCT speed have
reduced motion artifacts by enabling acquisition faster than or comparable to the time scales of
physiological motion. However motion distortion remains a challenge because catheter/endoscope
OCT imaging involves both circumferential and longitudinal scanning of tissue. This paper
presents a novel image processing method to estimate and correct motion distortion in both
the circumferential and longitudinal directions using a single en face image from a volumetric
data set. The circumferential motion distortion is estimated and corrected using the en face
image. Then longitudinal motion distortion is estimated and corrected using diversity of image
features along the catheter pullback direction. Finally, the OCT volume is resampled and motion
corrected. Results are presented on synthetic images and clinical OCT images of the human
esophagus.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Catheter/endoscope-based optical coherence tomography (OCT) is a powerful imaging modality
capable of capturing depth-resolved tissue features in luminal organs. Since the development of
the first catheter-based OCT probe more than 20 years ago [1], many variations of scanning probes
have been developed. These scanning probes consist of micro-optics to deflect and focus light
onto the tissue and beam scanning mechanisms which can acquire cross sectional or volumetric
OCT data. The imaging probe can be miniaturized so that it can be introduced through instrument
channels of endoscopes and image areas of interest under endoscopic guidance. Depending on
the optical beam scanning direction relative to the longitudinal axis of the probe, catheter OCT
probes can be divided into either forward-viewing [2–10], scanning the beam in front of the
probe, or side-viewing, scanning the beam perpendicular to the longitudinal axis. Side-viewing
probes are more popular for imaging luminal organs and can be further divided based on the
type of scanning mechanism (proximal or distal). Proximal scanning probes [11–16] use a fiber
optic rotary joint to transmit the rotation from a proximal motor to the distal end of the probe.
Conversely, distal scanning probes [17–20] use micro-motors at their tip for circumferential beam
scanning. The circumferential scanning is combined with a pullback retraction of the optical
assembly to perform a helical scan and acquire volumetric data. In this paper, we limit our
attention to motion distortion associated with side-viewing probes.
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There are different types of motion distortion in side-viewing OCT probes including: radial,
circumferential, and longitudinal distortion. Radial distortion is often caused by changes in
the distance between the tissue lumen and scanning probe, leading to variation in the axial
position of the tissue and also the spatial sampling pitch. However, in catheter/endoscopic
OCT, this motion is usually small, because the probe is in contact with the tissue. The second
type of distortion, circumferential distortion, is sometimes referred to as non-uniform rotational
distortion (NURD) and is caused by variations in the circumferential scan position or speed.
In proximal scanning systems, NURD is typically caused by the mechanical friction between
the catheter torque coil and surrounding sheath [21]. It is further exacerbated by physiological
motion of the tissue lumen and bending of the imaging catheter. The use of distal scanning
micro-motor OCT probes dramatically reduces NURD associated with mechanical friction in
the probe. NURD is reduced, but still occurs in micro-motor probes, because the motors have
bearing friction and are usually driven open loop [22]. Circumferential motion distortion can be
corrected by non-rigid registration using motion estimated from fiducial markers on the probe
housing [22], speckle statistics between consecutive A-scans from a dynamic light scattering
model [23], directly from OCT en face images by assuming there are slowly varying structures
that are oriented roughly parallel to the pullback axis [24], or by maximizing the similarity
between consecutive cross-sectional frames after alignment [25]. There are also micro-motor
engineering solutions to reduce NURD, such as using synchronous micro-motors to reduce the
speed variation with respect changing loads or temperature [26,27]. These motors have been
used for intravascular OCT applications which require high rotational speed, small dimensions,
and a very low maximum torque (∼a few µNm). Conversely, micro-motors used in endoscopic
OCT scan a larger diameter lumen and require large beam steering optics. This necessitates
larger micro-motors which also have higher moment of inertia armatures.

Circumferential motion distortion can also be caused by lateral movement of the tissue on the
time scale of the sequential circumferential scans. The data acquisition in side-viewing OCT
scanning is similar to a rolling shutter in commercial complementary metal-oxide semiconductor
(CMOS) cameras where sequential rows of the camera sensor are exposed at different times [28].
Therefore, there is image distortion caused by moving objects in both methods, because every
row of the CMOS camera or every B-scan in OCT samples the object at a different time. For
OCT, even if the rotational beam scanning is uniform, circumferential distortion can still occur if
there is relative displacement between the tissue and catheter during sequential rotational scans.
This relative displacement can be caused by peristalsis, respiration, or cardiac motion, as well as
coupled into the catheter from an external source.

The third type of motion distortion is longitudinal distortion, which is manifest as stretched
or compressed areas in en face OCT images. This distortion is often caused by pullback speed
variations arising from mechanical friction of the micro-motor and optical assembly with the
probe sheath or by relative longitudinal motion (sliding) between the tissue and catheter from
physiological motion. This type of distortion poses a challenge to interpreting en face OCT
images in clinical applications. For example, if en face OCT images are used to detect dysplasia
in patients with Barrett’s esophagus, longitudinal motion distortion may obscure the mucosal
features or cause them to appear distorted.

Software and hardware solutions have been developed to reduce longitudinal motion distortion.
Lee et al. [29] suggested scanning the same region with two spatially-separated beams, registering
common features between the two images, and estimating longitudinal motion from the registered
results. Although effective, this method doubles the acquisition bandwidth needed. Another
approach is increasing the A-scan rate and pullback speed to reduce the impact of physiological
motion. Wang et al. [30] reported an intravascular OCT technique called “Heartbeat OCT”,
which operated at 2.88 MHz A-scan rate, 4,000 frames/s, and 100 mm/s pullback speed. An entire
vessel segment could be scanned within 1 cardiac cycle, reducing the effects of cardiac motion.
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However, the circumference of intravascular OCT catheters is much smaller than catheters used
in other organs, such as the gastrointestinal tract. Implementing an analogous approach to
“Heartbeat OCT” in larger luminal organs would require excessive increases in A-scan rate, which
is technically challenging [31,32].

In this paper, we introduce a novel method that uses only a single en face OCT image to
estimate and correct for circumferential and longitudinal motion distortion in catheter-based OCT
volumes. Circumferential distortion estimation/compensation uses NURD-corrected data [22]
to generate an en face OCT image and estimate the circumferential motion distortion. Using
NURD-corrected data allows us to minimize the distortion from non-uniform micro-motor
rotation, leaving residual distortion from the relative motion between the catheter and tissue. We
developed a modified optical flow algorithm to estimate the catheter/tissue displacement from a
selected en face image. In contrast to the traditional optical flow [33] method that uses a sequence
of images for registration and estimation of the displacement vector, our method only requires a
single en face image to estimate the circumferential displacement. It jointly estimates both the
displacement and partial derivative of image intensity simultaneously. The en face image is then
resampled to correct all remaining circumferential motion distortion. This image is subsequently
used for longitudinal distortion correction. The longitudinal distortion correction quantifies the
standard deviation of en face image features within a fixed size window sliding along the pullback
direction to estimate the longitudinal sampling interval. Then, the en face image is resampled to
correct the longitudinal motion distortion. The process is repeated to correct all en face images
in the OCT volume. We demonstrate our method for distortion correction on synthetic en face
images and OCT images of the esophagus from patients undergoing surveillance endoscopy for
Barrett’s esophagus.

2. Methods

2.1. OCT imaging instrument

We acquired data using a prototype ultrahigh speed, MEMS-VCSEL SS-OCT system operating
at 600 kHz A-scan rate. A detailed description of this system has been previously published [18].
The instrument has 8 µm axial and 20 µm transverse resolution (full width at half maximum), and
a 2.4 mm imaging range (in tissue). Volumetric OCT scanning was performed by a micromotor at
24,000 rotations per minute, 400 Hz frame rate, with longitudinal pullback speed of 2 mm/second
for 8 seconds, imaging a ∼10 mm × 16 mm (circumferential × longitudinal) area. A strut on the
motor housing blocked ∼40% of the circumferential field of view, leaving an imaging area of
∼6 mm × 16 mm. Each B-scan consisted of 1,500 A-scans and each volume had 3,200 B-scans.

Imaging was performed using a side-viewing, micro-motor OCT catheter (Fig. 1(B)). A 2 mm
diameter micro-motor (DBL02, Namiki Precision, CA) scanned the OCT beam circumferentially.
An optical fiber and graded index lens assembly focused the beam ∼200 µm outside the outer
wall of the probe sheath. The fiber / graded index lens was aligned to the scanning micro-motor
mirror / prism by a metal housing and attached to a stainless-steel torque coil. The imaging
assembly was contained within a high lubricity transparent PTFE sheath (Zeus Inc.) to facilitate
smooth longitudinal pullback.

2.2. Clinical setting

The study was performed under an IRB protocol approved by VA Boston Healthcare System
(VABHS), Harvard Medical School, and Massachusetts Institute of Technology. Written informed
consent was obtained before imaging. Data was obtained from patients with Barrett’s esophagus
(14 patients with history of dysplasia and 30 with non-dysplasia Barrett’s esophagus (NDBE)),
who were undergoing endoscopic surveillance for dysplasia at the VABHS between September
2013 and March 2017. A dual-channel endoscope was used to introduce the OCT probe through
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Fig. 1. A) Schematic of the ultrahigh speed SS-OCT system. B) Construction of the
micro-motor scanning probe with an inset showing an intact view of the probe head.

the endoscope accessory channel and position it on regions of interest. Multiple OCT volumes
were acquired from the squamous region, gastroesophageal junction (GEJ), squamocolumnar
junction (SCJ), areas with nodularity and/or irregular mucosal/vascular patterns on white-light
endoscopy and narrow-band imaging. Additional details about the study setting and patient
demographics can be found in Ref. [34].

2.3. Overview of the data-processing pipeline

Figure 2 shows a block diagram of the processing pipeline with a breakdown for each block shown
in Fig. 3. The pipeline consists of three steps. In Step 1, we process raw OCT fringes to calculate
the B-scan OCT intensity image. Next, we correct for NURD using edges of the probe housing
as fiducial marks, as described in Ref. [22]. An OCT volume is generated by concatenating the
sequential NURD-corrected B-scans. Next, a mean depth projection is performed over ± 50 µm
depth (100 µm range) at multiple depths to generate depth-resolved en face images with improved
contrast and reduced noise. Finally, the algorithm computes the dynamic ranges of all en face
images and chooses one with the largest dynamic range, called image I. This image is displayed
to the user to confirm that it has representative features and there are no data acquisition errors.
In Step 2, we estimate the remaining circumferential motion caused by relative motion between
the tissue and catheter. We then use the estimated motion to resample I and generate a second
motion-corrected en face image, called I1, which should have only longitudinal motion distortion.
Finally, in Step 3, we use I1 to estimate and correct the longitudinal motion. The estimated
motion is used to resample all en face images at different depths (without depth projection) to
correct the entire volume. We describe the details of Steps 2 & 3 in the next sections.

2.4. Estimate and correct circumferential motion distortion

The estimation and correction of circumferential motion distortion is performed iteratively until a
predetermined stopping criterion is satisfied (either a maximum number of iterations is reached,
or minor improvement is observed with each iteration). Each iteration consists of estimating
the circumferential motion and resampling the en face image I using the estimated motion. We
use a maximum of 30 iterations because we found that only minor improvements were obtained
with further iterations. We describe details of the sub-steps below and show example correction
results using different numbers of iterations.

2.4.1. Estimate circumferential motion from the selected en face image

In the 2D coordinate system of the optimal en face image, I, let c[m, n] and l[m, n] be the
circumferential and longitudinal sampling coordinates of a pixel with a circumferential index
of m (0 ≤ m ≤ C − 1) at longitudinal index n (0 ≤ n ≤ L − 1), where C and L are the number
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of A-lines in the circumferential dimension and the number of B-frames in the longitudinal
dimension, respectively. Because the sampling frequency in the circumferential dimension was
much faster (600,000 Hz) than that in longitudinal dimension (400 Hz), we ignore the dependence
of l on the circumferential index m and refer to it as l[n]. Hence, I{c[m, n], l[n]} is the image
intensity at the pixel [m, n]. If there is no circumferential motion distortion, all circumferential
coordinates with the same index m will be similar, i.e. c[m, n] = c[m, n + k],∀k = 1, 2, . . .
However, because of circumferential motion, this condition is usually not satisfied. Let ∆c[m, n]
be the circumferential coordinate difference of the pixel index [m, n] between longitudinal index
n and n + 1, namely ∆c[m, n] = c[m, n + 1] − c[m, n].We used a modified optical flow algorithm
to estimate ∆c[m, n] from I. Using the Taylor’s expansion, we can write

I{c[m, n + 1], l[n + 1]} ≈ I{c[m, n], l[n]} +
∂I
∂c
∆c[m, n] +

∂I
∂l
∆l[n] + H.O.T , (1)

where H.O.T denotes higher order terms and ∂I/∂c, ∂I/∂l denote partial derivatives of the
image intensity in the circumferential and longitudinal directions, respectively. In Eq. (1), both
intensities I{c[m, n + 1], l[n + 1]} and I{c[m, n], l[n]} are available. To solve for ∆c[m, n], it is
necessary to estimate the partial derivatives ∂I/∂c and ∂I/∂l.The partial derivative ∂I/∂c can be
well approximated from the difference in image intensity

∂I
∂c

≈ I{c[m + 1, n], l[n]} − I{c[m, n], l[n]}. (2)

However, the other derivative

∂I
∂l

≈ I{c[m, n], l[n + 1]} − I{c[m, n], l[n]} (3)

cannot be evaluated because the intensity I{c[m, n], l[n + 1]} is not available from the measure-
ment. However, if the displacements ∆c[m, n] are known, we can resample the intensity
I{c[m, n + 1], l[n + 1]} at n + 1 to obtain I{c[m, n], l[n + 1]}. To resolve the coupling between
the two unknowns ∆c[m, n] and I{c[m, n], l[n + 1]}, we used a joint estimation algorithm, where
one unknown is fixed and the other was updated. For example, when ∆c[m, n] is fixed, we can use
it to resample I{c[m, n + 1], l[n + 1]} to obtain I{c[m, n], l[n + 1]}, then substitute it into Eq. (3)
to compute the partial derivative ∂I/∂l. The derivative is used in Eq. (1) to solve for ∆c[m, n]
and ∆l[n] using the Lucas-Kanade (LK) method [33] for optical flow. The solution is used to
update ∆c[m, n]. This process is repeated until convergence. The method is summarized below
(Algorithm 1).

In our implementation, convolutions with Sobel kernels [35] was used to calculate the
derivatives ∂I/∂c and ∂I/∂l. The Sobel kernel effectively computes the differential in one
dimension while performing a weighted average in another dimension normal to it, allowing
a more robust estimation. Additionally, because the circumferential motion of neighboring
pixels is likely very similar, we estimate ∆c[m, n] in a coarse grid where only 20 values of the
circumferential coordinate m are used to sample the entire circumference (18 degrees angular
sampling pitch). This achieves a significant improvement in algorithm throughput. Next, in order
to calculate the circumferential coordinates c[m, n] from ∆c[m, n], one could simply integrate
along the time dimension. However, we found that this integration is sensitive to the estimation
error in ∆c[m, n], which sometimes led to unreasonable results for large n. To avoid this, we
enforce additional global constraints on the circumferential coordinates:1. Top left circumferential
coordinate constraint c[0, 0] = 0. 2. Within one cross-section, the coordinate difference between



Research Article Vol. 12, No. 1 / 1 January 2021 / Biomedical Optics Express 231

Algorithm 1: Estimation of ∆c using a modified optical flow method

Inputs: pixel intensity image I

Outputs: circumferential coordinate change ∆c

Steps: Let Ik{c[m, n], l[n + 1]} and ∆ck[m, n] be the estimations at the iteration kth.

1. Initialize ∆c0[m, n] = 0 and I0{c[m, n], l[n + 1]} ≡ I0{c[m, n], l[n]}

(assuming no circumferential distortion).

2. For k = 1, 2, . . . repeat until convergence:

a. Solve for ∆ck+1[m, n] using the LK method with image intensities

I{c[m, n + 1], l[n + 1]}, I{c[m, n], l[n]}, and Ik{c[m, n], l[n + 1]}.

b. Use ∆ck+1[m, n] to resample I{c[m, n + 1], l[n + 1]} to obtain

Ik+1{c[m, n], l[n + 1]}.

c. Check the stopping condition by computing the relative update ratio of

δst = max[m,n] |{∆ck+1[m, n] − ∆ck[m, n]}/∆ck[m, n]|. If δst<ε(= 10−3)
or

k ≥ 30, exit or else continue.

neighboring indices m should be within a feasible range i.e.

[1 − δ]d ≤ c[m + 1, n] − c[m, n] ≤ [1 + δ]d, (4)

where d is the average circumferential distance between two neighboring A-scans. δ defines the
tightness of the constraint (smaller is more constrained). To enforce a smooth change in c, we
chose a small value, δ = 0.01.

These constraints were cast into a convex quadratic programming problem with constraints to
solve for c[m, n] from the estimated ∆c[m, n], namely

c∗ = arg min
c

∑︂
[m,n]

|c[m, n + 1] − c[m, n] − ∆c[m, n]|2, (5)

subject to c[0.0] = 0 and [1 − δ]d ≤ c[m + 1, n] − c[m, n] ≤ [1 + δ]d. Here, we use the bold
font to denote vectors (e.g. c) while lower case, italicized font is used for a coordinate of the
vector (e.g. c[m, n]). The optimization problems were solved using the Optimization Toolbox
of MATLAB, Mathworks Inc. As mentioned above, we use δ = 0.01 in Eq. (4), which is a
relatively small number, and perform the correction over multiple iterations that alternate between
estimating the circumferential motion and resampling the en face image. Our experimental results
show that it is possible to relax this constraint with a larger value for δ and reduce the number
of iterations. However, we found the convergence was smoother if we clipped the estimated
displacements to underestimate the actual displacements and performed “partial” correction
over multiple iterations (most converged in 5 to 10 iterations), rather than performing a “full”
correction in only 1 or 2 iterations. This is because the Taylor expansion in Eq. (1) is only valid
for small displacements ∆c. Therefore, it is better to distribute the correction for large ∆c over
multiple iterations and perform a small correction on each iteration.
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2.4.2. Resample the en face image to correct circumferential distortion

After solving for the circumferential coordinates c∗ of all pixels, we compute the maximum value
of the circumferential coordinate across all estimated coordinates c∗ as cmax = ⌊max c∗⌋.From
this, we compute new a new vector of circumferential coordinates c1 that uniformly sample
the range [0, cmax] with unit increments, namely c1 = [0, 1, . . . , cmax]

T and c1[m1] = m1 for
0 ≤ m1 ≤ cmax. Finally, we use bilinear interpolation to resample the intensity I{c[m, n], l[n]} for
each longitudinal coordinate n to obtain I1{c1[m1], l[n]}. Note that the longitudinal index n is not
required to describe the resampled circumferential coordinate vector c1 because it is the same for
all n.

2.4.3. Example results of circumferential distortion correction

Figure 4(A) shows an example of an en face OCT image I acquired from an NDBE patient which
has noticeable distortion of the mucosal surface pattern caused by circumferential motion (mucosal
surface patterns in NDBE are typically homogeneous and more circular). Figures 4(B)–4(D)
show how the en face image evolves with different number of iterations. Only a fraction of the
circumferential motion distortion is corrected (Fig. 4(B)) after 5 iterations, while most of the
distortion is corrected after 30 iterations. The insets show 2x zoomed images of a region from
the en face images with almost no remaining circumferential distortion after 30 iterations. The
motion-corrected image after 30 iterations I1 was passed to the next step in the algorithm, to
estimate and correct longitudinal motion distortion.

2.5. Estimate and correct longitudinal motion distortion

The estimation and correction of longitudinal distortion was performed iteratively. In each
iteration, an estimation of the longitudinal sampling interval were performed, followed by a
resampling step to correct for the longitudinal distortion. A checking step is performed after
each iteration to determine if convergence has been reached and the iteration can be terminated.

2.5.1. Estimation of the longitudinal sampling interval

The longitudinal motion distortion is estimated from I1{c1[m1], l[n]}. This type of distortion
is caused by variations in the longitudinal sampling interval ∆l[n] = l[n + 1] − l[n] with n. To
quantify ∆l, we begin with the observation that there is a strong correlation between the interval
∆l and en face image feature distortion. A shorter value of ∆l can be caused by the optical
assembly not pulling back with uniform speed, or sticking in the sheath, as well as by the probe
sliding in the direction opposite the pullback. This causes the en face image features to appear
stretched, because the same features are sampled for a longer time that they should be. Conversely,
a longer value of ∆l can be caused by the optical assembly rapidly pulling back within the sheath,
as well as the probe sliding in the direction of the pullback. This distortion causes the tissue
to be more sparsely sampled, resulting in longitudinal compression of features in the en face
image. Based on this observation, we estimated the sampling interval by measuring the diversity
of the image features over a fixed-sized window sliding along the longitudinal dimension. The
diversity is quantified by first performing a one-dimensional, short-time Fourier transform along
the longitudinal dimension, with a window of 5 pixels around every pixel of interest (∼50 µm
long). The window size was chosen as a compromise between localization and feature diversity
for longitudinal motion estimation. A small window provides better localization. However, the
feature diversity may be insufficient to ensure reliable estimation. A large window will capture
sufficient feature diversity at the cost of less localization. Next, we compute the power spectral
density by squaring the magnitude spectrum. Then, we compute a deviation σ[m1, n] from the
power spectral density to characterize feature diversity at each pixel [m1, n]. A smaller value of σ
means a narrower power spectra or less variation in the image features. Regions where the probe
is out-of-contact with the tissue do not contain any image features, therefore the corresponding σ
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values do not necessarily represent the longitudinal velocity and pixels from these regions are
excluded from the longitudinal motion estimation. The out-of-contact regions are identified by a
simple thresholding step, where every pixel with intensity less than a threshold is classified as
out-of-contact. To estimate ∆l[n], we used the median value of the deviation σmed[n] across the
circumferential dimension after excluding all the σ values from out-of-contact regions, namely

σmed[n] = medianm1σ[m1, n]. (6)

The choice of median deviation provides a good measure of image feature variation across
the circumferential dimension as well as robustness to estimation errors of σ from imaging
artifacts (e.g. variations in intensity from polarization changes, cross-sections with more than
one type of tissue, etc.). More importantly, this method minimizes the estimation error due to
naturally elongated tissue structures. These structures are expected to be local instead of global
in the circumferential direction. To estimate ∆l[n], we hypothesize that there exists a increasing
function f , such that ∆l[n] = f {σmed[n]}. When ∆l is small, there is less variation in the image
features, hence, σ is small and vice versa. Furthermore, f (0) = 0 because when the pullback
velocity is zero, i.e. ∆l = 0, the image feature remains unchanged. Differences in tissue types
had a strong influence on the median deviation σmed. For example, squamous mucosa (which is
devoid of mucosal surface patterns) was typically much smoother than gastric mucosa or regions
of Barrett’s esophagus (which have mucosal surface patterns). Hence, squamous mucosa often
had smaller σmed than other tissues. To account for the difference in the tissue type, we chose the
function f (.) to be of the following form

∆l[n] = f {σmed[n]} =
σmed[n]

⟨σmed[n]⟩n
, (7)

where ⟨σmed[n]⟩n denotes averaging of σmed[n] over a window larger than the scale of the
longitudinal distortion. In our implementation, the window size was chosen to be 100 samples.
From the definition in Eq. (7), it can be seen that when σmed[n] = ⟨σmed[n]⟩n, the sampling
interval ∆l[n] is one pixel and no correction is needed. To estimate the sampling interval, we use
the image I1 to compute the median deviation σmed[n] at each time n. A running average over a
length of 100 samples is used to compute ⟨σmed[n]⟩n. Then, we substitute both quantities into
Eq. (7) to compute the sampling interval ∆l[n]. Finally, we clip ∆l[n] to be within [0.8, 1.2]. This
prevents excess correction in each iteration and facilitates convergence to a smoother longitudinal
distortion correction.

2.5.2. Correct longitudinal motion distortion

To correct for the longitudinal distortion, we compute the longitudinal sampling coordinates

l[n] as l[n] =
L−1∑︁
k=0
∆l[k] and l[0] = 0. Next, we extract the maximum longitudinal sampling

coordinate lmax as lmax = maxnl[n] = l[L − 1]. We use this maximum value to compute a set of
new longitudinal coordinates l1[n1] that uniformly sample the range [0, lmax] as

l1[n1] =
lmaxn1
L − 1

, (8)

with 0 ≤ n1 ≤ L − 1. Finally, we use spline interpolation to resample I1{c1[m1], l[n]} at l1[n1]
for each circumferential coordinate m1 to generate a new image I2{c1[m1], l1[n1]} with corrected
longitudinal motion distortion. We use spline instead of linear interpolation for longitudinal
resampling because the longitudinal distortion is more pronounced than circumferential distortion.
Hence, a better interpolator (e.g. spline) is required. A summary of parameters is provided in
Table 1.
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Fig. 2. Processing pipeline to correct for circumferential and longitudinal motion distortion.

 

 

 

 

 

 

 

 

 

Fig. 3. Breakdown of different blocks in the processing pipeline.

Table 1. Parameters used in motion correction algorithm

Parameters Unit Values Effect on performance

Maximum number of iterations for circumferential distortion
estimation and correction

Iterations 30 Convergence speed

Circumferential coordinate tightness constraint factor (δ) Pixels 0.01 Correction quality

Window length to evaluate feature diversity in longitudinal
sampling interval estimation (Lfeatures)

Pixels 5 Correction quality

Window length [pixels] to normalize the difference in tissue type
(Ltissue−normalizing)

Pixels 100 Correction quality

Allowable range of ∆l in each iteration Pixels [0.8, 1.2] Convergence speed

Difference between 10% and 90% percentiles of ∆l to stop
longitudinal sampling interval estimation

Pixels 0.03 Convergence speed

Maximum number of iterations for longitudinal sample interval
estimation

Iterations 300 Convergence speed

2.5.3. Stopping criteria for the longitudinal correction

After each iteration, a test is performed to determine a stopping condition. The sampling values
∆l[0], . . . .,∆l[L − 1] are sorted from minimum to maximum. Then, the difference between 10%
and 90% percentiles is computed and compared to a predetermined threshold (selected to be
0.03). If the difference is less than the threshold, the iteration is terminated. Otherwise, we
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Fig. 4. Correction results for circumferential motion distortion versus different number of
iterations. The blue arrows point to areas with pronounced distortion due to circumferential
motion.

continue iteration until the stopping condition is satisfied or the maximum number of iterations
(set to 300) is reached. Convergence is usually achieved within the first 100 iterations. Our source
code for image distortion correction is at: https://gitlab.com/huutan86/distortion_correction.git.

2.5.4. An example of longitudinal distortion correction

Figure 5(A) shows an example of an en face image I1 of the esophagus from a NDBE patient.
This image was corrected for circumferential distortion using the procedure in Section 2.4. Using
this image, we calculated the median deviation of the image features as shown in Fig. 5(B) (top).
This deviation was used to estimate the sampling interval ∆l[n] from Eq. (7). The estimated
sampling interval is shown in Fig. 5(B) (bottom). Different regions with obvious longitudinal
distortion in Fig. 5(A) are marked by colored rectangles with an zoomed insets in the bottom.
There were regions with both compression (red and brown) and stretching (green and purple)
of en face features. The corresponding values for the median deviation σmed[n] and sampling
interval ∆l[n] are annotated with matching colors in Fig. 5(B). From this plot, one can see that
the compressed regions (red and orange ovals) have larger median deviations and sampling
intervals, while the stretched regions (green and purple ovals) have smaller median deviations
and sampling intervals. The estimated sampling intervals were used for resampling the en face
image to compensate for the effects of longitudinal distortion. This process was repeated until
convergence (18 iterations were needed in this example). The final en face image (I2) is shown
in Fig. 5(C) with most of the longitudinal distortion removed. The 3x zoomed insets at the
bottom of Fig. 5(A) and Fig. 5(C) show that stretched features are restored, demonstrating that
longitudinal motion distortion is corrected.

2.6. Motion distortion correction of the entire OCT volume

To correct the entire OCT volume, we first sliced it into multiple en face images (without depth
projection). For each en face image, we correct the circumferential distortion, followed by

https://gitlab.com/huutan86/distortion_correction.git
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Fig. 5. A) A circumferential motion distortion corrected image (I1) used for longitudinal
motion estimation. The insets in the bottom shows a 3x zoomed regions of the en face image.
B) Median deviation of the image features σmed[n] (top) and estimated ∆l[n] (bottom) as
the functions of longitudinal index n in the 1st iteration. The ovals in these plots show the
estimated σmed[n] and ∆l[n] for different regions in the en face image in A) (color matched).
C) En face image corrected for longitudinal distortion; the insets show 3x zoomed regions.
A clear reduction of the longitudinal distortion can be observed.

longitudinal distortion. The correction for circumferential motion distortion was performed
iteratively, following the procedure in Section 2.4. However, here we use the estimated
displacements from Section 2.4.1 for resampling and do not re-estimate the circumferential
motion for each en face image. The correction for longitudinal motion distortion is similar to that
described in Section 2.5, except that we use the estimated sampling interval in Section 2.5.1 for
resampling and do not re-estimate the sampling interval.

3. Results

3.1. Demonstration of distortion correction on synthesized test images

It is difficult to evaluate the algorithm performance for endoscopic OCT because ground truth data
is not available. Therefore, we tested performance by using an input volume with minimal motion
distortion (Fig. 6(A)) and synthesized two motion distorted test volumes to mimic distortion
commonly observed in clinical data. The circumferential distortion was generated using the
formula

∆c[m, n] = g[(h ∗ x)][n], (9)

where x[n] was drawn from a normal distribution for each longitudinal index n, h[n] =
(1/M)[e−0.5(n/15)2 ] was a normalized Gaussian filtering kernel to simulate the degree of the
correlation between longitudinal indices under circumferential distortion. M was a normalizing
constant, selected so that

∑︁
n

h[n] = 1. The standard deviation of this Gaussian was selected to

be 15 pixels, chosen based on distortion seen in typical clinical data. Finally, the normalizing
function g(.) scaled the filtered signal amplitude so that the maximum amplitude of ∆c was 50
pixels, a value selected based on the clinical data. Using the generated ∆c[n], we shifted and



Research Article Vol. 12, No. 1 / 1 January 2021 / Biomedical Optics Express 237

zero-padded each longitudinal index n to generate a circumferentially distorted image. This
image was then processed to simulate longitidutinal motion distortion.

Fig. 6. A) The input image with low motion distortion used to synthesize distorted test
images, B) Synthetic test images generated from A) using two random motion profiles, C)
Distortion corrected test images from B). The boxes denote regions used to compute the
structure similarity index measures (SSIM) between the low distortion input image, and
distortion corrected test images. D) 1.5x zoomed regions of the patches used for calculating
the SSIM. The arrows between the patches denote the SSIM values.

To simulate the longitudinal motion distortion, we used the equation

∆l[n] = 1.0 −

5∑︂
i=1

0.8e−0.5[(n−ni)/30]2 , (10)

where ni(i = 1, .., 5) were five random positions along the pullback. These locations were
randomly sampled, such that ∆l was positive in both cases. This mimics a situation where the
longitudinal pullback of the optical assembly had sticking 5 times. When the pullback speed
was reduced by sticking, the longitudinal sampling slows down from the maximum value of
1.0 to 0.2(= 1.0 − 0.8). Using this ∆l[n], we resampled the circumferentially distorted image
generated in the previous step to add longitudinal distortion. The distorted test images are shown
in Fig. 6(B). Then, the motion correction was applied to these test images to remove the distortion.
Corrected images are shown in Fig. 6(C). Note that the two motion corrected images are very
similar to the input image, even though the distorted test images are synthesized using very
different motion profiles. This demonstrates the convergence and stability of the algorithm.

To quantify the similarity between correction outputs, we extracted corresponding test patches
from the input image and the two motion corrected test images as shown in Fig. 6(D). The patches
were compared using structure similarity index measures (SSIMs) [36], which is a number from
0 to 1 telling the similarity between the patches using the luminance, contrast, and structures. A
higher value of SSIM corresponds to greater similarity. Note that the SSIM between the two
motion corrected patches is high (0.75), suggesting the convergence of the motion corrected
output to the same result, irrespective of the motion profile that was applied to the input image.
This value is larger than the SSIM between each motion corrected patch and the input image,
suggesting that there may have been a small amount of motion in the input image that was
corrected by the algorithm.
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3.2. Motion distortion correction of OCT images of human esophagus

Next, we validated the motion distortion correction algorithm on a selection of en face images
from patients with different pathologies. Figure 7(A) shows an en face OCT image (at ∼60 µm
below the mucosal surface) from a NDBE patient under surveillance for dysplasia with in a region
affected by motion distortion. The motion-corrected image is shown in Fig. 7(B). Figure 7(C)
shows selected 1.5x zoomed regions of the NDBE mucosa (red) and squamous mucosa (blue).
The motion distortion of the columnar epithelium mucosal patterns (top-left inset) was corrected
(top-right inset). The bottom left image has a region of homogeneous squamous epithelium with
darker areas caused by insufficient or out-of-contact tissue. There is a high degree of waviness in
the boundaries of these areas (bottom-left inset) caused by rapid circumferential motion distortion.
This distortion was almost completely corrected (bottom-right inset), facilitating a more accurate
evaluation of mucosal features.

 
 
 
 
 
 

 
 
 
 
 
 

Fig. 7. A) En face OCT image from a patient with NDBE, B) Distortion corrected version
of A). C) 1.5x zoomed images of regions in A) and B).

We then assessed the algorithm performance on images from patients with dysplastic BE.
Figure 8(A) shows an en face image (at ∼40 µm below the mucosal surface) with low-grade
dysplasia. Blue arrows indicate hypo-scattering atypical glands, characteristic OCT features of
dysplasia [34]. The mucosal surface pattern in the dashed red region shows distorted mucosal
surface patterns associated with dysplastic BE. Both circumferential and longitudinal motion
distortion is visible in this region. Longitudinal motion distortion causes the mucosal features
to appear stretched (∼1/3 from the top) and compressed (about half of the region, right of
hypo-scattering structure). Figure 8(B) shows the motion corrected image.

Figure 8(C) shows regions of interest enlarged by 1.5x. After motion correction, the mucosal
surface pattern is more homogeneous with no noticeable compression or stretching. Also,
glandular structures appear less distorted after motion correction. Before motion correction,
the gland boundary has a discontinuity with sharp edges, which was likely caused by rapid
circumferential motion distortion and does not represent the true shape. Distortion and irregularity
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Fig. 8. En face image from a patient with low grade dysplasia, B) Distortion corrected
version of A). C) 1.5x zoomed images of a region with irregular mucosal surface pattern in
A) and B).

in mucosal surface patterns and glandular structures are possible OCT markers of dysplasia,
therefore motion-corrected images can reduce the risk of interpretation errors.

Figure 9 shows several correction examples different regions extracted from the clinical images.
These regions represent different features observed in our dataset including: small pit pattern of
columnar epithelium (Fig. 9(A)), small Barrett’s esophagus (BE) island (Fig. 9(B)), large pit
pattern with large (Fig. 9(C)) and small (Fig. 9(D)) amounts of motion, squamous epithelium
(Fig. 9(E)), and the SCJ function (Fig. 9(F)). Consistent reduction in the motion distortion is
observed for all cases.

3.3. Quantification of the performance for distortion correction using clinical data

To benchmark the performance of the algorithm across all datasets, we use two different metrics
to evaluate the amount of residual circumferential and longitudinal motion distortion, respectively.
The first metric is the average magnitude of the circumferential median medm∆c[m, n] along the
longitudinal dimension.

d∆c = ⟨|medm∆c[m, n]|⟩n. (11)

The circumferential median medm∆c[m, n] was used to quantify the amount of circumferential
distortion for each longitudinal index n. The magnitude was used because this quantity can be
negative or positive. A small value of d∆c corresponds to a lower amount of circumferential
distortion and vice versa. The second metric is the standard deviation of ∆l[n] along the
longitudinal dimension.

d∆l = σn{∆l[n]}. (12)

A small value of d∆l corresponds to a more uniform sampling in the longitudinal dimension
i.e. lesser amount of residual longitudinal motion and vice versa. Figure 10 shows two scatter
plots for d∆c and d∆l from 54 datasets obtained from all 44 patients. One data point corresponds
to 1 dataset with the color indicating the diagnosis. A dashed black line corresponding to the
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Fig. 9. Representative regions of the esophagus before (left) and after (right) correction.
Scale bar: 1 mm.

equation y = x is drawn in each plot dividing the plot into two domains where the method was
effective (below the line) vs. not effective (above the line).

We notice that the amount of circumferential distortion varied appreciably among these
datasets, but there were no large differences in motion corrected results between subgroups.
While some datasets had a very small amount of circumferential distortion d∆c ≈ 0.05 pixel,
others had a much larger amount of d∆c ≈ 0.2 pixel. Circumferential motion distortion was
reduced in most of the datasets, except for one (arrowhead). Figures 11(A)–11(B) shows the
en face images of this dataset before and after motion distortion correction. The 1.5x zoomed
regions (Fig. 11(C)) of these en face images show very complicated features with a longitudinal
compression coupled with possible circumferential displacement. The algorithm attempted
to correct distortion by stretching the image in the longitudinal dimension and correcting for
circumferential displacement. The corrected image did not appear to improve, likely due to
improper sampling in the raw en face image. In contrast to circumferential motion distortion,
a reduction in longitudinal motion distortion was observed in all the datasets, with a saturated
performance at d∆l ≤ 0.02 pixel for all cases.

3.4. Processing time

Table 2 shows processing time for different steps of the algorithm to process an OCT volume of
3,200 B-scans with 1,500 A-scans per B-scan and 240 points per A-scan. Pre-processing to time
required to process raw OCT fringes to calculate the B-scan OCT and correct for NURD is not
included.

The algorithm requires ∼13.5 minutes to process a volumetric OCT data (1,500× 3,200= 4.8
million A-scans). In many cases, the total processing time is less than 13.5 minutes because
the stopping condition is reached before the maximum number of iterations. A large portion
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Fig. 10. Algorithm performance for motion correction in the circumferential (left) and
longitudinal directions (right) for 54 datasets from 44 patients. Each “x” symbol corresponds
to one dataset. The color of the symbol denotes the patient diagnosis. Dashed lines in each
plot correspond to y = x and separate the plot into two regions showing motion distortion
correction performance.

Fig. 11. A-B) En face images from a HGD patient where our method failed to reduce the
motion distortion. C) 1.5x zoomed images of a region specified in A) and B) show improper
sampling due to fast jumping in the pullback and a potentially coupled circumferential
distortion.
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Table 2. Processing time for different steps in the motion distortion correction algorithm.

Processing blocks Block sub-steps Avg. time
per iteration

[s]

Typical # of
iterations

Max time [s]

Estimate and correct
circumferential distortion.

Estimate ∆c from I. 13.3 30 399.0

Solve c from ∆c. 3.1 30 93.0

Resampling en face to prepare for
the next iteration.

0.22 30 6.6

Estimate and correct
longitudinal distortion.

Estimate ∆l from I1. 0.73 100 73

Resampling en face to prepare for
the next iteration

0.16 100 16

Whole volume correction.

Load NURD corrected data. N.A. N.A. 6.2

Resample enface images in the
circumferential dimension.

0.24 240 57.6

Resample enface images in the
longitudinal dimension.

0.17 240 40.8

Write result to hard drive. N.A. N.A. 109

Total time 801.2 (∼13.5
minutes)

(∼50%) of the total time is required to estimate ∆c from the input en face image I. The code is
in prototype form and for easy of development. Therefore, this step is implemented on CPUs.
The estimation is sequentially performed from the most distal to most proximal position of the
longitudinal pullback. However, since there is no dependency between estimation of ∆c from I at
different longitudinal index n, this estimation step can be performed in parallel processing using
Graphic Processing Units (GPUs). Similarly, estimation of the longitudinal sampling interval
∆l[n] can be performed in parallel for different longitudinal index n.

Volumetric correction with different images at different en face depths, currently requires
∼12% of the total time and could be performed in parallel processing. The I/O time to write
processed images cannot be easily speeded up by parallel processing. However, this step is only
required for off-line data investigation and storage.

4. Discussion

Although the algorithm uses several parameters, many are determined by the instrument and
scanning protocol, so the number of arbitrary parameters is not excessive. Algorithm performance
depends on a small set of parameters (δ, Lfeatures, Ltissue−normalizing) related to the size of the image
feature being evaluated. Other parameters such as ∆l, the stopping condition, and the maximum
number of iterations only affect the convergence speed rather than the final output. Therefore, the
algorithm can be applied to other datasets with a different sampling pitch or different features
by appropriately scaling these feature size parameters, while retaining the default values for
other parameters. The last column of Table 1 summarizes the effects of parameters on algorithm
performance.

Our algorithm utilizes a single en face image to estimate motion and differs from other
correction methods that only use cross-sectional images [23,25]. There are two types of motion
correction methods using cross-sectional images. The first type estimates the motion using
fiducials on the catheter [22]. This approach corrects NURD due to scanning non-uniformity
but does not account for lateral tissue motion. While the motion corrected data has minimal
rotational distortion, it may still suffer from distortion due to tissue motion. The second type of
approach estimates and corrects motion using cross-sectional images of tissue instead of fiducials
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[23,25]. This approach accounts for tissue motion in the circumferential direction. However, it
does not account for longitudinal motion distortion which causes variation in the longitudinal
sampling interval. Our method adds an extra layer of correction on top of NURD correction to
enforce consistency in both the circumferential and longitudinal dimensions, which is critical for
reliable image interpretation. It was also possible to perform motion distortion correction starting
from the en face image generated directly from non-NURD-corrected OCT data. However, we
found that using the NURD-corrected data was superior because the estimated circumferential
displacement was smaller than if the non-NURD-corrected data was used. This facilitates a
smoother convergence of the optical flow algorithm, because the Taylor expansion in the optical
flow algorithm performs better for smaller displacement values.

One disadvantage of our algorithm is that it relies on en face image features for motion
estimation. We selected en face images with the highest dynamic range, but they typically only
contain a subset of features from the OCT volume. Also, the depth selection of the en face
image may be optimal for some regions and not others. Images from homogenous regions, such
as those with squamous epithelium, will have less contrast than other regions (e.g. Barrett’s
epithelium), making accurate estimation challenging. While we accounted for this phenomenon
using the normalization scheme in Eq. (7), we envision that estimation accuracy can be improved
if an optimal depth is selected at each longitudinal (pullback) location instead of using a single
selection for all locations. Future increases in A-scan rates will increase the sampling density
and the visibility of features used for motion estimation, improving algorithm performance.

Improving tissue coverage will likely increase the robustness and the accuracy of the motion
estimation. In our study, we used an endoscope-based catheter of 3.4 mm diameter, which was
much smaller than the esophageal lumen. The en face image used for motion estimation only
covered a portion of the esophagus, while other regions were out-of-contact. Therefore, the
estimated motion was only local to the tissue area imaged by the probe. Improving the tissue
coverage will allow a larger portion of the esophagus to be imaged, increasing robustness of the
motion estimation. We emphasize that our algorithm should be compatible with modalities which
have larger tissue coverage such as OCT capsules [37–39] or OCT balloons [40,41]. However,
caution is required to ensure that the en face image has sufficient sampling density to visualize
features for motion estimation.

It is important to note that the dominant motion distortion that requires correction is in the
transverse direction. Axial motion where tissue is in contact with the probe is relatively small.
Images from out of contact regions have poor quality and are usually not interpretable. The
OCT probe sheath acts analogously to a microscope slide cover glass, reducing tissue surface
roughness which produces aberrations, enabling subsurface imaging.

The problem of motion correction is similar to the wobbling correction problem in computer
vision caused by rolling shutters [28,42–44], although the image distortion here was more
severe. In endoscopic OCT, sequential cross-sectional B-scans were obtained at different times,
causing circumferential motion distortion. In the wobbling correction problem, different rows of
the camera sensor are exposed at different times, causing skew and curvature distortion. The
similarity between these two problems allows adaptation of wobbling correction methods to
correct circumferential distortion. Recently, Rengarajan et al. [28] suggested using convolutional
neural networks to estimate the row-wise camera motion from image features contained in a
single rolling shutter image. Although simple and powerful, this method required a large training
dataset that contains hundreds of thousands of synthetic images generated from undistorted
images. This requirement is challenging in clinical OCT applications such as endoscopy where
the amount of data is limited patient enrollment and procedural complexity. Therefore, a method
that requires less training data is preferred.

There are also important differences between the catheter-based OCT problem and the wobbling
correction problem. First, the B-scan frame rate for catheter-based OCT is relatively slow (a few
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hundred Hertz in endoscopic OCT) compared to the row reading rate in commercial cameras (∼65
kHz for a 60 fps 1080p camera). Therefore, circumferential motion distortion in catheter-based
OCT is more severe than wobbling from the rolling shutter. Furthermore, the catheter-based
OCT problem is confounded by the coupling of longitudinal motion distortion and non-uniform
longitudinal sampling.

Our motion distortion correction algorithm can be applied to other catheter/endoscope-based
OCT methods such as intravascular OCT, unsedated capsule imaging for Barrett’s esophagus
screening [39,45–47], or balloon-based OCT esophageal imaging for large circumferential
coverage [41,48]. It could also be applied to correct for motion artifacts in lower GI imaging for
anal and rectal imaging of mucosal crypt architecture [49].

Machine learning algorithms typically rely on large amounts of data with labels obtained
from multiple sources to reduce inter-observer variation. Training these algorithms to account
for motion distortion can be costly, because it requires a large amount of clinical OCT images.
Furthermore different readers can classify the same features as regular or irregular because
of varying tolerance to motion distortion and previous training experience. Motion distortion
correction can be used to normalize the data, hence, reduce the amount of data needed to train
machine learning algorithms. This is because mucosal features will be less distorted after
correction compared to original data. For human readers, evaluation of features such as irregular
mucosal surface patterns or atypical glands which are potential markers of BE with dysplasia
should be less prone to inter-observer variation [34].

5. Conclusions

This paper presents a new method to estimate and correct motion distortion in catheter/endoscope-
based OCT. The algorithm begins with OCT pre-processing to generate the OCT volume from
raw fringes and correct for NURD using fiducial markers on the probe housing. Then, we select
an en face image with high dynamic range and representative features to estimate the motion
distortion. This en face image is analyzed using a modified optical flow algorithm to estimate
the relative circumferential motion between the tissue and catheter, then resampled to correct
circumferential motion distortion. The corrected image is then used to estimate the longitudinal
motion distortion from the standard deviation of the image features in a sliding window along
the longitudinal direction. After estimating both circumferential and longitudinal motion, all
en face images of the NURD corrected volume are resampled to correct the entire volume. We
demonstrate the performance of the algorithm on synthetic images and clinical OCT images of the
human esophagus from patients with Barrett’s esophagus undergoing surveillance for dysplasia.
The algorithm can be used in multiple OCT applications which may have circumferential and
longitudinal motion distortion.
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